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Senescence in the Lung

Inflammatory and antiviral responses to influenza A virus infection are
dysregulated in pregnant mice with allergic airway disease
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Abstract

Influenza A virus (IAV) infections are increased during pregnancy especially with asthma as a comorbidity, leading to asthma
exacerbations, secondary bacterial infections, intensive care unit admissions, and mortality. We aimed to define the processes
involved in increased susceptibility and severity of IAV infections during pregnancy, especially with asthma. We sensitized mice
to house dust mite (HDM), induced pregnancy, and challenged with HDM to induce allergic airway disease (AAD). At midpreg-
nancy, we induced IAV infection. We assessed viral titers, airway inflammation, lung antiviral responses, mucus hypersecretion,
and airway hyperresponsiveness (AHR). During early IAV infection, pregnant mice with AAD had increased mRNA expression of
the inflammatory markers Il13 and IL17 and reduced mRNA expression of the neutrophil chemoattractant marker Kc. These mice
had increased mucous hyperplasia and increased AHR. miR155, miR574, miR223, and miR1187 were also reduced during early
infection, as was mRNA expression of the antiviral b-defensins, Bd1, Bd2, and Spd and IFNs, Ifna, Ifnb , and Ifnl . During late
infection, Il17 was still increased as was eosinophil infiltration in the lungs. mRNA expression of Kc was reduced, as was neutro-
phil infiltration and mRNA expression of the antiviral markers Ifnb , Ifnl , and Ifng and Ip10, Tlr3, Tlr9, Pkr, and Mx1. Mucous
hyperplasia was still significantly increased as was AHR. Early phase IAV infection in pregnancy with asthma heightens underly-
ing inflammatory asthmatic phenotype and reduces antiviral responses.

NEW & NOTEWORTHY Influenza A virus (IAV) infection during pregnancy with asthma is a major health concern leading to
increased morbidity for both mother and baby. Using murine models, we show that IAV infection in pregnancy with allergic air-
way disease is associated with impaired global antiviral and antimicrobial responses, increased lung inflammation, mucus hyper-
secretion, and airway hyperresponsiveness (AHR). Targeting specific b-defensins or microRNAs (miRNAs) may prove useful in
future treatments for IAV infection during pregnancy.

allergic airway disease; asthma; infection; influenza; pregnancy

INTRODUCTION

Asthma is a global significant health problem, and is the
most common chronic disease to affect pregnant women (1–
4). In a Canadian population-based retrospective cohort
study consisting of 134,188 pregnant women, asthma was the
most prevalent comorbidity during pregnancy, occurring in
6,978 subjects (5.2%) (4). When compared with the year
before pregnancy, they observed that the presence of a
comorbidity resulted in higher hospitalization rates during
pregnancy compared with pregnant women without any
comorbidity {rate ratio 7.9 [95% confidence interval (CI) 5–
12.5] vs. 5.1 [3.6–7.3]}.

Respiratory viruses, like influenza A virus (IAV), are the
most common cause of exacerbations among pregnant
women with asthma (5–8). This is exemplified in a prospec-
tive study where 71% of pregnant asthmatic women experi-
enced a questionnaire detected cold compared with 46% of
pregnant nonasthmatic women (9). These women were also
significantly more likely to experience multiple colds during
pregnancy (33% vs. 16%) and had greater symptom severity
compared with pregnant nonasthmatic women [median
total common cold questionnaire (CCQ) score 8 (5, 10) vs. 6
(5, 8)]. Asthma exacerbations increase in frequency during
pregnancy, as evidenced by a study by Murphy et al. (10),
where the ratio of hospitalizations to emergency department
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presentations for severe asthma exacerbations was sub-
stantially higher during pregnancy (2.97 events/year/per-
son) compared with before pregnancy (0.403 events/year/
person). In another study, these authors also showed that
among pregnant asthmatic women with PCR-confirmed
respiratory virus infections, 60% of infections was associ-
ated with uncontrolled asthma and increased prevalence
of preeclampsia (9).

During pregnancy, maternal immunity alters to become
tolerant to the presence of a growing fetus, however, respi-
ratory viruses can take advantage of these changes,
increasing the susceptibility and severity of viral infection
(11). In turn, infection exacerbates and increases the sever-
ity of the asthma phenotype (8, 12, 13). Previously, we
showed that peripheral blood mononuclear cells (PBMCs)
isolated from pregnant women and infected in vitro with
IAV (H1N1pdm09) had increased inflammatory responses
(14). In addition, PBMCs and primary nasal epithelial cells
(pNECs) from pregnant women with and without asthma
had attenuated antiviral responses following infection
with human rhinovirus and IAV H1N1pdm09 (15–18).

To date, our research has been limited to in vitro models
of infection in pregnancy and asthma. However, to deter-
mine the processes that underpin increased disease sever-
ity of IAV infections in pregnancy with asthma, we have
used in vivo murine models of IAV infection in pregnant
mice with allergic airway disease (AAD). We found
increases in early inflammatory responses and microRNAs
(miRNAs) were associated with reduced global antiviral
responses during both early and late infection with IAV in
pregnancy with asthma. Infection also prolonged exagger-
ated AHR.

METHODS

Mice and Animal Ethics

Female BALB/c mice 6–8 wk of age were obtained from
Central Animal House at the University of Newcastle and
acclimatized for 1 wk. All experiments were performed in the
Hunter Medical Research Institute (HMRI) animal facility,
under specific pathogen-free conditions. All animal works
and protocols used in this study were approved by the
Animal Ethics Committee of the University of Newcastle,
Australia.

Induction of Time-Mated Pregnancy

Mice were time-mated by first inducing the estrus cycle
for 3 days by placing two females per box into housing previ-
ously occupied by a male mouse (Fig. 1A). Females were
mated for 2 days with the male mouse that occupied the
housing previously. The third day was considered day 1 of
pregnancy.

IAV a/PR/8/34 Propagation

The mouse adapted IAV, A/Puerto Rico/8/34 was propa-
gated in Madine–Darby canine kidney (MDCK) cells using
UltraMDCK media (Lonza Bioscience). Viral titers in stocks
and tissue samples were determined by plaque assays as we
previously described (12, 19, 20).

Mouse Model of IAV Infection in Pregnancy with AAD

To characterize the impact of experimental asthma, mice
were lightly anesthetized with isoflurane (1.5 L/min) and then
sensitized by intranasal inoculation with house-dust mite
(HDM) extract (Greer Laboratories, Lenoir, NC) at 50 lg/50 lL
of sterile saline on the 3 consecutive days that matched the
induction of the estrus cycle (Fig. 1A) (21). Fourteen days later,
mice were challenged with HDM (5 lg/50 lL) for a further 3
consecutive days (21–24). IAV infection was induced on the
last day of HDM challenge (Fig. 1A). Pregnant mice with and
without AAD and age-matched control females were intrana-
sally inoculated with a sublethal dose of the mouse-adapted
strain of IAV H1N1 A/PR/8/34 [10 plaque-forming units (pfu)
in 50 lL of ultraMDCK media) or media only (25–27). This
time point coincides with day 11 of pregnancy and corre-
sponds with the second trimester of pregnancy in humans.
The timing of both sensitization and challenge is an impor-
tant determinant that was carefully planned when designing
these experiments (21–24). We have shown that mice resolve
symptoms of acute AAD over 20 days (12). To develop effec-
tive acute AAD in mice, sensitization needs to be performed
14 days before challenge to allow sufficient time for Th2 cells
to develop. Then mice are challenged to induce AAD and at
the same time influenza infection during the mid-second
week of gestation in mice. This is analogous to infection dur-
ing the second trimester in pregnant women, which is when
women are most likely to have influenza and develop asthma
exacerbations during pregnancy, which is modeled here (4,
16, 28). After 3 or 7 days postinfection (dpi), lung function was
assessed, mice were euthanized, and lung tissue was collected
for subsequent analyses (Fig. 1A) (25, 26, 29–33).

Bronchiolar Lavage Fluid Collection

Bronchiolar lavage fluid (BALF) was collected by tying off the
right lung lobe and washing the left lobe only twice with 500 lL
of DMEM (Sigma-Aldrich, Australia) (25, 26, 34). Erythrocytes
were lyzed by addition of red blood cell lysis buffer (200 μL, 5
min, 4�C) and the remaining cell suspension was centrifuged
(200 g, 5 min, 4�C). Supernatants were aspirated and stored for
subsequent protein analyses and the remaining cell pellets were
resuspended in DMEM (160 μL, Sigma-Aldrich, Australia). Total
leukocytes were quantified using the trypan blue exclusion
method using a hemocytometer with the outer four squares
counted before calculating total cells/mL [(count of four
squares)/4� 2� 0.16� 104 cells/mL]. The remaining leukocytes
were centrifuged onto microscope slides using a cytospin
(Shandon, Cheshire, England; 300 g, 10min, room temperature).
Differential enumeration of inflammatory cells was determined
afterMayGrunwald–Giemsa staining based onmorphology (35).

Lung mRNA and miRNA Expression

To obtain mRNA andmiRNA, snap-frozen lung tissue from
one lobe of the multilobed right lung was homogenized and
extracted using TRIzol reagent, according to the manufac-
turer’s instructions (Life Technologies Pty Ltd, Australia) (36,
37). Total RNA was reverse-transcribed using BioScript
(Bioline, Alexendria, Australia) and random hexamer primers
(for mRNAs) or reverse primers U6, U44, and U49 (for
miRNAs) (Invitrogen). Relative abundance of complementary
DNA was determined using custom-designed primers and
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SYBR FAST (Sigma-Aldrich, Australia) compared with the ref-
erence gene hypoxanthine-guanine phosphoribosyltransfer-
ase, analyzed using a ViiA 7 Real-Time PCR System (Thermo
Fisher Scientific, Australia) (12, 38, 39).

Viral Titers by Plaque Assay

Plaque assays were used to measure both the viral stock con-
centrations and recovered virus from BALF. MDCKs (80% con-
fluent) were infected with fivefold serial dilutions of lung
homogenate and subsequently overlaidwith Leibovitz-15media
containing 1.8% agarose and trypsin [tosylamido-2-phenylethyl
chloromethyl ketone (TPCK)]. Plates were incubated at 35�C for
3 days and plaques were subsequently counted (19, 20, 25, 26).

Histology

Following perfusionwith 0.9% saline solution, the large-lobed
left lung was fixed in 10% formalin solution (Sigma-Aldrich,
Australia), embedded in paraffin, and sectioned at 5 lm thick-
ness. Lung sections were then stained with periodic acid Schiff-
Alcian blue (PAS-AB), and the numbers ofmucus-secreting cells
around the airways were counted using a grid and�100magni-
fication (35, 40, 41). Ten counts were averaged and are repre-
sented asmucus-secreting cells per 100 lMof airway.

Lung Function

Airway hyperresponsiveness (AHR) was measured in anes-
thetized, cannulated mice using a Buxco Electronic resistance
and compliance system (Sharon, CT) in response to increasing
doses of methacholine. This machine induces a deep inflation
in the lungs before each dose including at baseline, which
normalizes the resistance between the groups at this baseline
time point. Data are represented as dose response curves
ranging from 0 to 50mg/mL ofmethacholine (12, 32, 40, 42).

Statistical Analyses

Data were analyzed using GraphPad Prism 8 (San
Diego, CA). Normality of the data was assessed using the
D’Agostino–Pearson normality test. Differences between
data with three or more groups were assessed using the one-
way ANOVA (or Kruskal–Wallis test for nonparametric data),
with Tukey’s adjustment for multiple comparisons. For lung
function data, a two-way ANOVA using a mixed model with
repeated measures and Tukey’s adjustment for multiple com-
parison was performed. For viral titers, data were assessed
using the unpaired two-tailed Student’s t test (or rank-sum test
for nonparametric data). Data are represented asmeans ± SE.

RESULTS

For clarity throughout the results, we have focused on com-
paring infection in pregnancy with AAD with IAV infection in
pregnancy alone, since we are examining how asthma affects
infection in pregnancy. Other comparisons are included in
the Supplement Data and are highlighted in the DISCUSSION

(https://doi.org/10.6084/m9.figshare.22193362.v2).

IAV Infection in Pregnancy Alters Viral Titers during Early
and Late Infection and Reduces Pregnancy Success

We first explored the impact of IAV infection on an asth-
matic phenotype in pregnancy (Fig. 1). Plaque assays showed

that at the peak of infection [i.e., 3 days postinoculation (3
dpi)], viral titers in pregnant mice with AAD were increased,
though not statistically significant, compared with pregnant
mice with IAV infection only (Fig. 1B). However, following 7
dpi with IAV, pregnant mice with AAD showed significantly
lower viral titers compared with pregnant mice with IAV only
(Fig. 1C). To examine the effect of IAV infection and AAD on
the success of pregnancy following 3 days of mating, wemeas-
ured pregnancy success rates and found significant reductions
in pregnancy success among all three groups compared with
controls. The combined effect of IAV infection with AAD pro-
duced the greatest reduction in pregnancy success (Fig. 1D).

IAV Infection in Pregnancy with AAD Reduces Neutrophil
but Increases Eosinophil Influx into the Airways

We next assessed the impact of IAV in pregnancy with AAD
at the peak (3 dpi, Fig. 2A) and persistence (7 dpi, Fig. 2B) on
inflammatory cell influx into the airways. At 3 and 7 dpi, IAV
infection in pregnant mice with AAD resulted in a significant
decrease in the influx of neutrophils compared with pregnant
mice with IAV only (Fig. 2, A and B). By 7 dpi, IAV-infected
pregnant mice with AAD also had significantly reduced total
leukocytes, monocytes, and lymphocytes compared with
pregnant mice with IAV only (Fig. 2B). At 3 dpi, pregnant
mice with IAV infection and AAD showed no difference in eo-
sinophil response compared with pregnant mice with IAV
only, however there was a significantly blunted eosinophil
response compared with pregnant mice with AAD only. By 7
dpi, pregnant mice with IAV infection and AAD showed sig-
nificantly increased eosinophil production compared with
pregnant mice with IAV only, and comparable levels when
compared with pregnantmice with AAD only.

IAV Infection in Pregnancy with AAD Increases
Proinflammatory Cytokine Responses in the Lung

The major cause of morbidity and mortality following IAV
infections is excessive acute cytokine responses and a cytokine
storm. Thus, we next assessed the impact of IAV infection in
pregnancy with AAD on lung mRNA expression of key inflam-
matory cytokines including interleukin (Il) Il5, Il13, Il17, Il1b ,
Kc, IL6, and tumor-necrosis factor alpha (Tnfa) (Fig. 3). At 3 dpi,
IAV infection in pregnant mice with AAD resulted in signifi-
cantly increased mRNA expression of the proasthmatic and
proinflammatory cytokines Il13 and Il17a, compared with preg-
nantmicewith IAV infection only (Fig. 3A). Therewas no differ-
ence in the expression of Il1b , Il6, and Tnfa mRNA levels
between IAV-infected pregnant mice with AAD and IAV-
infected pregnant mice without AAD. By 7 dpi, Il17 expression
was still significantly increased (Fig. 3B). At both 3 and 7 dpi, ke-
ratinocyte-derived chemokine (Kc, mouse equivalent of human
IL-8) levels were significantly decreased in IAV-infected preg-
nant mice with AAD compared with pregnant mice with IAV
infection only; corresponding with the significantly reduced
neutrophil counts we observed in the BALF in Fig. 2.

IAV Infection in Pregnancy with AAD Leads to
Dysregulated miRNA Expression

We next examined the expression of four microRNAs
(miR155, miR574, miR223, and miR1187) known to be induced
during IAV infections (Fig. 4). At 3 dpi, all four miRs were
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significantly decreased in IAV-infected pregnant mice with
AAD compared with pregnant mice with IAV infection only
(Fig. 4A). By 7 dpi, no significant difference was observed in
the expression of these miRNAs in IAV-infected pregnant
mice with AAD compared with all control groups (Fig. 4B).

IAV Infection in Pregnancy with AAD Impairs Antiviral
Responses

IFNs provide a critical antiviral response during IAV infec-
tion (26, 43), and at 3 dpi, we found that IAV-infected pregnant
mice with AAD had significantly decreased mRNA expression
of interferon Ifna, Ifnb , and Ifnl compared with pregnant
mice with IAV only (Fig. 5A). At this same time point, both Ifng
and IFNc-inducible protein (Ip)10 (Cxcl10) were significantly
increased in IAV-infected pregnant mice with AAD compared
with pregnantmice with IAV only. Expression of the viral RNA-
sensing Toll-like receptors (TLRs), Tlr3, Tlr7, and Tlr9, was also
significantly increased in the lungs of IAV-infected pregnant
mice with AAD compared with pregnant mice with IAV only
(Fig. 5A). The downstream early induced IFN-stimulated genes

(ISGs), protein kinase (Pkr) and myxovirus resistant 1 (Mx1),
showed no significant difference in IAV-infected pregnantmice
with AAD comparedwith pregnantmicewith IAV only.

By 7 dpi, mRNA expression of Ifnb, Ifnl, Ifng, and Ip10was
all significantly decreased in IAV-infected pregnant mice
with AAD compared with pregnant mice with IAV only (Fig.
5B). At this time point, Tlr3 and Tlr9 (but not Tlr7), as well as
the ISGs Pkr and Mx1, were also significantly reduced in
IAV-infected pregnant mice with AAD compared with preg-
nant mice with IAV only (Fig. 5B).

IAV Infection in Pregnancy with AAD Impairs
Antimicrobial Responses

b-defensins (BDs) and surfactant proteins (SPs) are small
peptides also known to play an important protective role in
IAV infection as well as in the clearance of secondary bacte-
rial infections (44, 45). Consequently, we measured the
mRNA expression of two of the most common BDs, Bd1 and
Bd2, and the surfactant protein-D (SpD) (Fig. 6). We found
that at 3 dpi, Bd1, Bd2, and SpD were all significantly
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Figure 1. IAV infection in pregnancy with AAD leads to early increase of viral titers. Pregnant mice with AAD were inoculated with IAV H1N1 A/PR/8 or
media. Control females were administered saline and media only. A: mice were induced into estrus, sensitized with three doses of house dust mite
(HDM) extract and then time-mated. During the second week of gestation and 14 days after the last sensitization, mice were challenged with three further
doses of HDM to induce AAD. Control females were administered saline and media only. One day later mice were inoculated with IAV H1N1 A/PR/8 or
media. Endpoints were assessed at 3 and 7 days postinoculation. At 3 (B) or 7 (C) days postinoculation, lung tissue was homogenized and plaque assays
used to determine IAV titers. D: pregnancy success was also assessed by counting the total number of mice that were pregnant at the end of treatment
(assessed by visual observation for the presence of pups in the uterus at the time of culling) compared with total number of mice impregnated at the start
of treatment. n ¼ 4–8 females per group. Viral titers were assessed using the unpaired two-tailed Student t test (or rank-sum test for nonparametric
data), pregnancy success was assessed using the one-way ANOVA (or Kruskal–Wallis test for nonparametric data) with adjustment for multiple compari-
sons. �P< 0.05; ��P< 0.01. AAD, allergic airway disease; IAV, influenza A virus; H1N1, APR8; P, pregnant; pfu, plaque-forming unit.
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decreased in IAV-infected pregnant mice with AAD com-
pared with pregnant mice with IAV only (Fig. 6A). By 7 dpi,
these differences had largely resolved (Fig. 6B).

IAV Infection in Pregnancy with AAD Results in High
Levels of Mucus Production and Protracted AHR

We next investigated the impact of infection in pregnancy
with AAD on some of the major pathological features of
asthma, i.e., mucus hypersecretion and airway hyperrespon-
siveness (AHR) (Fig. 7). Histological analyses of lung tissues
showed that at both 3 and 7 dpi, IAV-infected pregnant mice
with AAD had significantly increased numbers of mucus-
secreting cells around the airways compared with that of
pregnant mice with IAV only (Fig. 7,A and B).

At 3 dpi, pregnant mice with AAD only as well as pregnant
mice with AAD and IAV infection had significantly increased
dynamic airway resistance in response to 50 mg/mL metha-
choline compared with uninfected pregnant controls without
AAD (Fig. 7C). However, by 7 dpi, pregnant mice with IAV
only and pregnant mice with AAD and IAV infection showed
significantly increased airway resistance comparedwith unin-
fected pregnant controls without AAD. This shows that
although AAD increases early (i.e., 3 dpi) AHR in this acute
model, IAV infection is the major determinant in prolonging
exaggerated AHR in pregnancy following IAV infection.

DISCUSSION

Here we make substantial progress in understanding the
impact of IAV infection in pregnancy and interactions with

an asthmatic phenotype, and the processes involved in
increased disease severity and pathogenesis of infection in
pregnancy with AAD. IAV infection in pregnant mice with
AAD significantly increases inflammation compared with
infection alone, evidenced by increased airway eosinophil
infiltration and mRNA expression of the key asthmatic
inflammatory cytokines, Il13 and Il17. We also showed
decreased global antiviral and antimicrobial protective im-
munity, including reduced neutrophil counts and Kc expres-
sion, reduced mRNA expression of type I and III IFNs, ISGs,
and BDs, and also significant decreases in key miRNAs,
known to be upregulated during IAV infections. Finally, we
showed that IAV infection during pregnancy with AAD
prolongs AHR in the mother and leads to reduced fertility
(Fig. 8).

In our study, we showed that IAV infection in pregnant
mice with AAD reduced protective neutrophil responses,
which was accompanied by a reduction in mRNA expres-
sion of Kc at both 3 and 7 dpi. We also showed a concomi-
tant increase in inflammatory eosinophil infiltration into
the lungs at 7 dpi and also increased proasthmatic Il13
and Il17 expression at 3 dpi. The early Il17 response was
still significantly upregulated at 7 dpi. These cytokines
are innate and adaptive inducers of Th2 responses and
contribute to asthma pathogenesis (46). IL-13 alone can
induce all of the hallmark features of asthma(30), and IL-
17 has important roles in the cytokine storm that occurs
during pathogenic IAV infection (47). Collectively, these
findings indicate that in an environment of pregnancy
and asthma, where there is already a Th2-skewed phenotype

Figure 2. IAV infection in pregnancy with AAD leads to increased inflammatory cells and reduced neutrophils. Pregnant mice with AAD were inoculated
with IAV H1N1 A/PR/8 or media. Control females were administered saline and media only. At 3 (A) or 7 (B) days postinoculation, bronchoalveolar lavage
fluid was obtained, cytocentrifuged onto microscope slides, stained with hematoxylin and eosin, and total and differential inflammatory cell counts
enumerated according to morphology. n ¼ 6–8 females per group. Data were assessed using the one-way ANOVA (or Kruskal–Wallis test for nonpara-
metric data) with adjustment for multiple comparisons. �P < 0.05; ��P < 0.01; ���P < 0.001; ����P < 0.0001. AAD, allergic airway disease; BALF, bron-
chiolar lavage fluid; dpi, days postinoculation; IAV, influenza A virus; H1N1, APR8; HDM, house dust mite; P, pregnant.
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(48), IAV infection substantially worsens the underlying
inflammatory conditions associated with lung damage.

Neutrophils are one of the early immune cells to influx
into affected areas in response to infection (49). Their

recruitment to the site of infection and inflammation occurs
in three phases, which include early neutrophil recruitment,
amplification of infiltration, and resolution (50). A host of
signals are involved in each of these phases, with the CXCL8
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family (including KC) being one of the most important sig-
nals in all three. Conversely, IL-17, although a key marker of
influenza infections (51), increases at the late phase of neu-
trophil recruitment and resolution and appears to play a
more prominent role in persistent neutrophil inflammation
that can occur following IAV infections (50). As such, the
reduction in KC expression that we saw at both early 3 dpi
and later 7 dpi likely accounts for the marked reduction we
observed in neutrophil infiltration at both early and late
time points.

Neutrophils are professional phagocytes that have essen-
tial roles in host defense against respiratory pathogens
including IAV (52). Although it is well established that neu-
trophils can contribute to lung injury during various patho-
logical conditions, a decrease in their numbers during mild
IAV infection enhances the development of severe clinical
disease (53, 54). This protective effect of neutrophils against
IAV infection has also been observed in a background with
chronic obstructive pulmonary disease (COPD) (26). This is
because these innate immune cells are important in the
effective clearance of IAV, suppressing the infection and
therefore assisting in controlling inflammation (52, 53, 55).

One of the most important ways they do this is by leaving
neutrophil trails enriched with CXCL12, which guides CD8 T
cells to the site of IAV infection (49).

Despite the decrease in neutrophil influx at both 3 and 7
dpi, there was still a decrease in viral titers observed by 7 dpi
in pregnant mice with AAD and IAV infection compared
with pregnant mice with IAV infection only. This may be
explained by the changes we observed in eosinophil influx
during 3 and 7 dpi. Although at 3 dpi, there was a blunted eo-
sinophil response in this group compared with pregnant
mice with IAV only, by 7 dpi, we saw a significant increase in
airway eosinophils in pregnant mice with AAD and IAV
infection.

During the 2009 influenza pandemic, it was observed that
although asthmatics were more likely to be hospitalized with
IAV infection, they had less severe IAV-induced morbidity
compared with nonasthmatics (56). More recently, several
studies have demonstrated that acute allergic asthma protects
mice from severe influenza. These studies usedmurinemodels
of ovalbumin (OVA)-sensitized mice with eosinophil transfer
from mice infected with IAV. They showed that eosinophils
are short-lived granulocytes, capable of phagocytosing virus

Figure 3. IAV infection in pregnancy with AAD increases proasthmatic and proinflammatory cytokine responses in the lung. Pregnant mice with AAD were
inoculated with IAV H1N1 A/PR/8 or media. Control females were administered saline and media only. At 3 (A) or 7 (B) days postinoculation, mRNA was
extracted from homogenized lung tissue and the relative abundance of proasthmatic interleukin (Il)5 and Il13 and proinflammatory Il17, Il1b, keratinocyte-
derived chemokine (Kc), Il6, and tumor necrosis factor-a (Tnfa) were assessed compared with the reference gene hypoxanthine-guanine phosphoribosyl-
transferase (Hprt). n ¼ 6–8 females per group. Data were assessed using the one-way ANOVA (or Kruskal–Wallis test for nonparametric data) with adjust-
ment for multiple comparisons. �P < 0.05; ��P < 0.01; ���P < 0.001; ����P < 0.0001. AAD, allergic airway disease; IAV, influenza A virus; H1N1, APR8;
HDM, house dust mite; P, pregnant.

Figure 4. IAV infection in pregnancy with AAD leads to reduced expression of influenza-induced miRNAs. Pregnant mice with AAD were inoculated with
IAV H1N1 A/PR/8 or media. Control females were administered saline and media only. At 3 (A) or 7 (B) days postinoculation, miRNA was extracted
from homogenized lung tissue and the relative abundance of miR155, miR574, miR223, and miR1187 was assessed. n ¼ 6–8 females per group.
Data were assessed using the one-way ANOVA (or Kruskal–Wallis test for nonparametric data) with adjustment for multiple comparisons. �P< 0.05; ��P< 0.01;
���P< 0.001. AAD, allergic airway disease; dpi, days postinoculation; IAV, influenza A virus; H1N1, APR8; HDM, house dust mite; P, pregnant.
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Figure 5. IAV infection in pregnancy with AAD leads to global reduction in the expression of antiviral mRNAs. Pregnant mice with AAD were inoculated
with IAV H1N1 A/PR/8 or media. Control females were administered saline and media only. At 3 (A) or 7 (B) days postinoculation, mRNA was extracted
from homogenized lung tissue and the relative abundance of interferon-a (Ifna), Ifnb, Ifnl, Ifng, IFNc-inducible protein (Ip)10, Toll-like receptor (Tlr)3, Tlr7,
Tlr9, protein kinase (Pkr), Mx1, and Rigi was assessed compared with the reference gene hypoxanthine-guanine phosphoribosyltransferase (Hprt). n ¼
6–8 females per group. Data were assessed using the one-way ANOVA (or Kruskal–Wallis test for nonparametric data) with adjustment for multiple com-
parisons. �P < 0.05; ��P < 0.01; ���P < 0.001; ����P < 0.0001. AAD, allergic airway disease; dpi, days postinoculation; IAV, influenza A virus; H1N1,
APR8; HDM, house dust mite; P, pregnant.
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particles, and can themselves be infectedwith IAV. This results
in their ability to present viral particles on their surface, which
can in turn activate CD8 T cells, leading to increased viral
clearance (57–59). Thus, our findings demonstrate why preg-
nant mice with AAD and IAV infection have an early blunted
eosinophil response that markedly increased by 7 dpi and
why despite having reduced neutrophil counts, there was also
reduced titers. Collectively, these findings provide important
insight as to why pregnant asthmatics have worsened symp-
tom severity with increased risk for hospitalization but
reduced viral load during infection.

To date, more than 15,000 miRNAs have been identified,
including hundreds of viral miRNAs, each of which has the
potential to target numerous genes during viral infections (60,
61). In this study, we examined the expression of four miRNAs
(miR-155, miR-223, miR-574, and miR-1187), known to be
induced during IAV infection and to have important antiviral
activity (61). For example, high airway levels of miR-155 have
been linked to reduced severity of infection (60, 62), and mice
deficient in miR-155 are unable to establish protection against
IAV infection as they have altered humoral and cell-mediated
immunity (63). Conversely, it appears to have no or redundant
roles in AAD (64). Increasing evidence also suggests a role for
miR-223 in limiting inflammation to prevent lung damage dur-
ing infection (60). In this study, we showed that following IAV,
all four miRNAs were significantly decreased in pregnant
mice with AAD compared with pregnant mice with IAV
infection only. These findings indicate a dysregulation in
miRNA expression that occurs because of having an under-
lying inflammatory lung condition during pregnancy. The

fact that this decrease was observed at 3 dpi but not so
markedly at 7 dpi highlights that miRNA dysregulation
occurs early during viral infection.

During the 2009 swine flu pandemic, pregnant women,
especially those with underlying lung disease like asthma,
commonly presented with febrile illness that developed into
secondary pneumonia, resulting in increased hospitalization
rates (28). BDs and surfactant proteins, like SP-D, are small pep-
tides that have essential roles in effective clearance of IAV
infection as well as bacterial infections that are secondary to
them (41, 44, 65, 66). In a recent study by Pinkerton et al. (32),
it was shown that therapeutic administration of hBD2 by intra-
nasal inoculation in mice with AAD resulted in a significant
reduction in the influx of inflammatory cells in the BALF. This
was associated with a reduction in key inflammatory cytokines
like IL13 as well as a reduction in airway hyperresponsiveness.

Like miRNAs, these peptides function as part of the early
innate immune response to IAV infection (44). Defensins are
produced predominantly by respiratory epithelial cells and
by neutrophils. Neutrophils express a-defensins, whereas
epithelial cells express b-defensins (67). Thus, in our study,
the cellular source of b-defensins can be attributed to the re-
spiratory epithelial cells infected by IAV. In our study, we
found that at 3 dpi, there were significant reductions in the
mRNA expression of Bd1, Bd2, and SpD in IAV-infected preg-
nant mice with AAD compared with pregnant mice with IAV
only. By 7 dpi, there was no significant difference in expres-
sion. These changes in b-defensins at 3 and 7 dpi also corre-
late with the Il13 expression we found in the lungs and that
observed previously by Pinkerton et al. (32).

Figure 6. IAV infection in pregnancy with
AAD leads to reduced expression of the
antimicrobials, b-defensins, and surfactant
proteins. Pregnant mice with AAD were
inoculated with IAV H1N1 A/PR/8 or media.
Control females were administered saline
and media only. At 3 (A) or 7 (B) days post-
inoculation, mRNA was extracted from ho-
mogenized lung tissue and the relative
abundance of Bd1, Bd2, and Sp-d was
assessed compared with the reference
gene hypoxanthine-guanine phosphoribo-
syltransferase (Hprt). n ¼ 6–8 females per
group. Data were assessed using the one-
way ANOVA (or Kruskal–Wallis test for
nonparametric data) with adjustment for
multiple comparisons. �P < 0.05; ��P <
0.01. AAD, allergic airway disease; BD,
b-defensins; dpi, days postinoculation; IAV,
influenza A virus; H1N1, APR8; HDM, house
dust mite; P, pregnant; SP, surfactant protein.

INFLUENZA IN PREGNANCY WITH ASTHMA

AJP-Lung Cell Mol Physiol � doi:10.1152/ajplung.00232.2022 � www.ajplung.org L393
Downloaded from journals.physiology.org/journal/ajplung at Univ of Newcastle (052.064.078.187) on October 3, 2023.

http://www.ajplung.org


Consequently, our findings highlight the importance of
the BDs in both IAV infection and AAD. Reductions in the
effectiveness of the BD pathway during IAV infection may
be part of the mechanism causing increased lung inflamma-
tion and secondary bacterial infection leading to IAV-
induced pneumonia. (55, 68, 69). Harnessing the potential of
BDs and miRNAs as antiviral agents could prove to be of
great value in restoring maternal immune responses before
or during IAV infections.

In our study, we found that IFN-c and IP-10, as well as the
downstream ISGs, PKR, and Mx1, and the viral-sensing TLRs
(3, 7 and 9) were increased in pregnant mice with AAD fol-
lowing infection at 3 dpi but reduced at 7 dpi. These data
match with our viral titers, showing increased viral counts at
3 dpi but a reduction by 7 dpi, highlighting the immune sys-
tem’s attempt to mount a sufficient antiviral response
against the infection. However, we also found that infected
pregnant mice with AAD had impaired early and late antivi-
ral type I and III IFN responses. We found that at both 3 and
7 dpi, mRNA expression of Ifnb and Ifnl was significantly
reduced in the lung tissue of pregnant mice with AAD fol-
lowing IAV infection when compared with pregnant mice
with IAV infection only. Previously, we have shown that
PBMCs from pregnant women with and without asthma dis-
play similar impaired antiviral responses following in vitro

infection with respiratory viruses like IAVs (16, 17). IFN-b
and IFN-k are produced early in infection by both epithelial
cells and innate cells, like dendritic cells, and lead to the
effective clearance of the invading virus, preventing exces-
sive host tissue damage (43, 70–72). As such, our findings
indicate that a decrease in these key antiviral agents may
lead to increased host tissue damage and altered lung func-
tion even when viral titers have reduced later in infection.

We found that HDM-induced AAD induces mucus-secret-
ing cell hyperplasia, which was maintained during IAV
infection in pregnant mice with AAD. In addition, we found
that pregnant mice with AAD and IAV infection showed
increased AHR at 3 dpi, which was maintained at 7 dpi. In
contrast, AHR induced by AAD alone was increased at 3 dpi
but resolved by 7 dpi. Numerous studies in murine models
have shown that IAV infection induces AHR even in the ab-
sence of AAD (73, 74). This may be mediated by IAV-induced
damage to the epithelial lining (evidenced by edema) as
well as increases in Th2-type cytokines like IL13 (73, 74).
Indeed, in our study, we observed that pregnant mice with
IAV infection, but no AAD, had increased levels of total
protein in BALF (see Supplemental Fig. S1: https://doi.org/
10.6084/m9.figshare.22193362.v2) indicative of lung dam-
age as well as increased levels of IL13 at both 3 and 7 dpi.
These findings help to explain why IAV infection even in the
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Figure 7. IAV infection in pregnancy with AAD maintains mucus hypersecretion and induces airway hyperresponsiveness. Pregnant mice with AAD
were inoculated with IAV H1N1 A/PR/8 or media. Controls were administered saline and media only. At 3 (A) or 7 (B) days postinoculation, mouse lungs
were collected, perfused, and inflated, stained with periodic acid Schiff-Alcian blue and the numbers of mucus-secreting cells enumerated. C: At 3 or 7
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assessed. n ¼ 6–8 females per group. Mucous hypersecretion was assessed using the one-way ANOVA (or Kruskal–Wallis test for nonparametric data)
with adjustment for multiple comparisons. Airway hyperresponsiveness was measured by two-way ANOVA using a mixed model, with repeated meas-
ures and adjustment for multiple comparisons. �P< 0.05; ��P< 0.01; ����P< 0.0001. AAD, allergic airway disease; dpi, days postinoculation; IAV, influ-
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absence of AAD still elicits AHR and why pregnant mice with
AAD have worsened outcomes following IAV infection.
Collectively, these findings show that in an environment of
asthma and pregnancy, where there is already a Th2-skewed
phenotype (48), IAV infection worsens the underlying inflam-
matory condition, increasing asthma symptoms.

A limitation of our study is that we used an acute model of
AAD in mice. This model resolves over 10–20 days (12). In
humans, most women have established asthma before fall-
ing pregnant. Thus, our model represents an exacerbation of
asthma during pregnancy, which occurs most commonly
during pregnancy following a respiratory viral infection.
This is likely to influence the immune cell types that are
involved in the immune responses, which is why we have
included data for both 3 dpi and 7 dpi.

Conclusions

Our findings show that the combination of IAV infection
in pregnancy with AAD leads to increased lung inflamma-
tion, mucus hypersecretion, and AHR. This is associated spe-
cifically with impaired global antiviral and antimicrobial
responses. This provides a plausible explanation for the
increase in IAV symptom severity and its effects in pregnant
asthmatic women, which is observed especially during influ-
enza pandemics. It also highlights the potential benefit that
may come from targeting specific BDs or miRNAs as a pre-
vention and/or treatment for IAV infection and secondary
bacterial infections during pregnancy.
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